Default Bayesian analysis with global-local shrinkage priors
نویسندگان
چکیده
منابع مشابه
Shrinkage Priors for Bayesian Prediction
We investigate shrinkage priors for constructing Bayesian predictive distributions. It is shown that there exist shrinkage predictive distributions asymptotically dominating Bayesian predictive distributions based on the Jeffreys prior or other vague priors if the model manifold satisfies some differential geometric conditions. Kullback– Leibler divergence from the true distribution to a predic...
متن کاملAlternative Global–Local Shrinkage Priors Using Hypergeometric–Beta Mixtures
This paper introduces an approach to estimation in possibly sparse data sets using shrinkage priors based upon the class of hypergeometric-beta distributions. These widely applicable priors turn out to be a four-parameter generalization of the beta family, and are pseudo-conjugate: they cannot themselves be expressed in closed form, but they do yield tractable moments and marginal likelihoods w...
متن کاملAdaptive Bayesian Shrinkage Estimation Using Log-Scale Shrinkage Priors
Global-local shrinkage hierarchies are an important, recent innovation in Bayesian estimation of regression models. In this paper we propose to use log-scale distributions as a basis for generating familes of flexible prior distributions for the local shrinkage hyperparameters within such hierarchies. An important property of the log-scale priors is that by varying the scale parameter one may v...
متن کاملHierarchical priors for Bayesian CART shrinkage
The Bayesian CART (classiication and regression tree) approach proposed by Chipman, George and McCulloch (1998) entails putting a prior distribution on the set of all CART models and then using stochastic search to select a model. The main thrust of this paper is to propose a new class of hierarchical priors which enhance the potential of this Bayesian approach. These priors indicate a preferen...
متن کاملLocation Reparameterization and Default Priors for Statistical Analysis
This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biometrika
سال: 2016
ISSN: 0006-3444,1464-3510
DOI: 10.1093/biomet/asw041